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Summary 

 

Predicting well performance and production prior to drilling 

has always been a challenge in the oil and gas industry. The 

need of developing robust methods of prediction helps it to 

be financially more viable and technically superior. With the 

emergence of big data, the ever-increasing computational 

power, and the growing library of platforms supporting a 

multitude of machine learning methods, data and analytics 

departments can play a crucial role in the development of 

fact-based methodologies and predictive models of future 

performance with high levels of confidence. In this paper we 

lay a series of supervised regression methods that proved 

highly predictive when compared to existing methods of 

estimating undrilled well production. We conducted an 

extensive machine learning modeling exercise using data 

from an active Jonah Energy (Jonah) gas field in Sublette 

County, Wyoming. Our objective was to predict well 

performance and annual-measured gas production in the first 

year of production. We considered several multidimensional 

and complex data (geological, drilling and production data) 

as direct and indirect factors that control production. We 

used a fact-based methodology for feature selection that 

focused on the use of measurement data rather than 

estimations or interpretation. Finally, we tested and 

compared various machine learning algorithms—including 

Linear Regression, Principal Component Analysis, Neural 

Network Regression, Boosted Decision Tree, and Binned 

Decision Tree—to find the optimum prediction of the 

current gas field. Ultimately, we judged the best results 

resulted by using Binned Decision Tree where the 

Coefficient of Determination was 0.63 and squared error was 

0.36.  Further Ensemble Decision forest was also tested to 

rule out any overfitting. Given the complexity of geology 

and physical limitation present dataset, the current 

production prediction seems prudent. 

 

Introduction 

 

The target gas field produces primarily from upper 

Cretaceous tight sands and siltstones. The gross productive 

interval is several thousand feet thick and consists of 

discontinuous interbedded classics (sandstones, siltstones, 

and mudstones). The main production happens from an 

Upper Lance formation and  Lower Mesaverde Formation 

(Cluff & Cluff., 2004). The Lance formation is fluvial in 

nature and has some packages of thick amalgamated sands 

that are heterogeneous but highly connected over long 

distances. These sands were deposited by a combination of 

medium-sized meandering channels and braided streams. 

The Mesaverde channels are comprised more commonly of 

single-channel fill complexes that are 

shallower and wider than those in the 

Lance and tend to be highly 

discontinuous. There is some 

amalgamation, but to a lesser extent 

than in the Lance.  Mesaverde shales 

have fossils and structures that 

exhibit some brackish floodplain 

influence. 

  

The field is fault-bound and believed 

to benefit from a mix of structural 

and stratigraphic trapping 

mechanisms. The source of gas in 

Lance sands is largely believed to be 

primarily from the Hilliard (or 

Baxter) formation, several thousand 

feet deeper in section. (Figure 1, 

Modified Stratigraphy). 

For our exercise, Jonah identified 

approximately 1,630 wells and 75 

features to test and train machine 

learning models. Those well data 

were recorded between the year of 1993-2018 and scattered 

throughout the 28,000-acre gas field. Among the 75 features, 

some have a direct relationship with production such as 

OGIP and formation thickness, while other factors such as 

total slurry or stage count have more complicated effects on 

production. Data cleansing and conditioning prove to be the 

most critical and time-consuming part in a machine learning 

exercise. To do analytical use cases, the data needs to be 

totally numeric. The following flow chart shows a generic 

machine learning flow for any machine learning exercise. 

 

 

Figure 2: Generic Machine Learning Flow. 

 

For our exercise, data cleansing involved a lot of 

standardization and filtering of repeated, incomplete, or 

incorrect records. Data cleansing occurred in two passes. 

The first pass focused on eliminating data that was deemed 

not useful. The second pass was to remove data that has no 

effect on production such as vender information, tool details 

etc. Dimensionality reduction methods were tested with the 

Figure 2 Figure 1: Stratigraphy 
of the Jonah Field 

Area; Modified after 

Hanson et al (2004) 
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help of principal component analysis. A methodical 

approach was taken on parameter/feature selection. Multiple 

passes were made both with and without certain values to 

check their effectiveness on production prediction. In our 

exercise, we selected 25 parameters to predict initial 

production. Once the data cleansing was done, we tested five 

different machine learning algorithms to optimize the 

prediction error. In the next section, we will discuss the 

different algorithms used in our work. 

 

Machine Learning Algorithms Used 
For the all our machine learning experiments, we used Azure 

Machine Learning Studio. Azure Machine Learning Studio 

is a cloud-based predictive analytics service that allows an 

agile “create and deploy” flow for generating predictive 

models as analytics solutions. A step-up approach was taken 

in this case, i.e., start with the simplest algorithm, see the 

results, and slowly add more layers of complexity as needed.  

 

Linear Regression. The first supervised machine learning 

method tested was Linear Regression. Linear Regression by 

principle performs a regression task. Regression models a 

target prediction value based on independent variables. It is 

mostly used for discovering the relationships between 

variables and forecasting. Different regression models differ 

from each other based on the kind of relationship between 

their dependent and independent variables. A Linear 

Regression model assumes that prediction errors follow the 

Gaussian distribution. This is usually fine except when the 

prediction target spreads out over several orders of 

magnitude (Zheng & Casari, 2018). Figure 3 depicts the 

steps of Linear Regression machine learning. For our test, a 

Linear Regression model gave a Relative Squared Error 0.93 

and Coefficient of Determination of 0.07. 

 

 

Figure 3: Flow chart showing Linear Regression model building 

steps. 

Principal Component Analysis (PCA) and Neural Network 

(NN) Regression. When using PCA for dimensionality 

reduction, the primary question to be addressed is how many 

principal components (k) to use. Like all hyperparameters, 

this number can be tuned iteratively based on the quality of 

the resulting model. However, there are also heuristics that 

do not involve expensive computational methods (O’Reilly, 

2018). After dimensionality reduction, a set of the neural 

networks was tried with various nodes. There are many 

parameters in neural networks controlling final model 

performance. The most crucial parameters are the number of 

hidden layers, learning rate and the number of iterations. 

 

 

Figure 4: Flow chart showing steps of NN without PCA model 

building steps. 

 

Based on the dataset, one can define the decision boundary 

as a set of decision lines, and a number of decision 

boundaries should separate the number of classes as needed. 

The number of the decision lines represents the number of 

hidden neurons in the first hidden layer. A new hidden layer 

should be added to connect the lines created by the previous 

layer. Thus, the number of hidden neurons in each new 

hidden layer equals the number of connections to be made 

(Gad, 2018). If the learning rate is low, then training is more 

reliable, but optimization will take significant time because 

steps towards the minimum of the loss function are tiny. 

There is no optimal number that generalizes across all data-

sets of a fixed size, but there are certain metrics to evaluate 

the quality of fit relative to that set. In this case, using NN 

without PCA improved the squared error prediction to 0.33. 

The number of hidden nodes is 1000, the learning rate of .01, 

and the numbers of iteration used are also 1000 (Figure 4). 

 

Decision Tree, Boosted and Binned. The next algorithm 

tested was Decision Tree. While one of the simplest 

algorithms, Decision Tree has proved to be very useful 

across a multitude of modeling exercises. This regression 

method is also a supervised learning method and therefore 

requires a labeled dataset. The label column must contain 

numerical values. Decision Tree builds classification or 



Gas Production Prediction Using Machine Learning: A Case Study 

3 

 

regression models in the form of a tree structure. It breaks 

down a dataset into smaller and smaller subsets while 

simultaneously an associated “master” Decision Tree is 

incrementally developed. Boosting means that each tree is 

dependent on prior trees. The algorithm learns by fitting the 

residual of the trees that preceded it. Thus, boosting in a 

Decision Tree ensemble tends to improve accuracy with 

some small risk of less coverage. In this case, we used a slow 

learning rate (0.5) and a comparatively simpler structure 

(number of leaves is 8 and minimum number of samples per 

leaf node is 8 and the total number of the tree constructed 

500), which gave a squared error of 0.37. Further binning the 

inputs into four groups further reduced the squared error to 

0.36. 
 

 

Figure 6: Flow chart showing steps of Binned Decision Tree model 

building steps. 

 

Comparison and selection of Algorithm  

 

From our experiment, it is evident that Neural Network 

Regression and Decision Tree yields similar results. The 

squared error of the initial tests was 0.95 and over the course 

of 3-4 weeks and many iterations we were able to achieve an 

error of 0.36. However, there are few caveats. Anything that 

involves a matrix—e.g., linear regression, logistic 

regression, NN regression, and so on, is affected by the scale 

of the input, whereas Tree-based models do not need scaling 

or normalization. If a model is sensitive to the scale of input 

features, feature scaling could also be helpful. As the name 

suggests, feature scaling changes the scale of the feature; it 

has also been referred to as normalization. Feature scaling is 

usually done at the individual feature level. Decision Trees, 

gradient boosted machines, and random forests are not 

sensitive to scaling, unless the scale of the input grows over 

time. This can be the case if the feature is an accumulated 

count, where it will grow outside of the range that the tree 

was trained on. If that is the case, it might be necessary to 

rescale the model periodically. In table 1 the results are 

compared. 

 

  Relative 

Squared Error 

Coefficient of 

Determination 

Linear 

Regression 

Linear 

Regression   

0.93 0.07 

N. Network 

Regression 

0.337059 0.662941 

Decision Tree  0.367724 0.632276 

Table 1: Prediction Value comparison between NN and Decision 
Tree. 

 

In this experiment, NN regression methods are not only time 

consuming but also the “scored model output” is scaled. If 

one wants to test and compare the effectivity of the 

prediction model by blind testing or in future wants to deploy 

it in production, the input needs to be scaled and normalized 

same way. It is doable but would be time consuming to 

create and cumbersome to maintain. On the other hand, input 

in Decision Trees does not need any scaling and the results 

can be compared readily, and the runtime is at least 8-times 

faster than that of the NN regression methods. Table 2 

summaries the comparison between the two methods. 

 

NN Regression Decision Tree  

Slower (both for training 

and classification)  

Faster than NN 

Output is not intuitive 

and usually requires de-

scaling 

Output can be consumed 

raw by end users 

Need scaling and 

normalization 

No scaling and/ 

normalization needed 

Can model more arbitrary 

functions (nonlinear 

interactions, etc.) and 

therefore might be more 

accurate, provided there 

is enough training data. 

However, it can be prone 

to over-fitting as well 

Need to prune the tree to 

avoid over-fitting. 

No hidden layers Hidden layers 

Table 2: Comparison of Neural Network Regression and Decision 
Tree methods. 
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Results and Further Discussion 

  

Upon reviewing all models, their usefulness, drawbacks, and 

ease of use, the decision was made to use Decision Tree. The 

error prediction reduced from .95 to .3 which is a significant 

improvement. Further feature engineering and ensemble 

training methods are expected to reduce observed error even 

more. However, because the goal of any machine learning 

problem is to find a single model that will best predict the 

observed outcome, here it was no different. A single 

machine learning model must be finalized for future 

deployment that can predict the initial production with an 

acceptable error range. To make sure, the selected model is 

the best-suited one and best/most accurate predictor, and an 

“ensemble methods testing” is the best practice. It can take a 

myriad of models into account and average those models to 

produce one final model. Thus, Decision Forest method was 

tried to confirm that the selected Decision Tree is the most 

suitable model for the provided dataset. However, it is 

important to note that Decision Trees are not the only form 

of ensemble methods, just the most popular and relevant in 

data science today and because they work best with limited 

data with physical limitations.  
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